

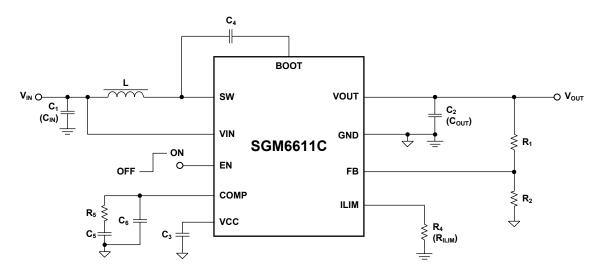
SGM6611C 12.6V, 7A Fully-Integrated Synchronous Boost Converter

GENERAL DESCRIPTION

The SGM6611C is a fully-integrated synchronous Boost converter. The 2.7V to 12V operating input voltage is suitable for single-cell or two-cell Li-Ion/Polymer batteries. This device is capable of providing 7A continuous switch current and an output voltage range of 4.5V to 12.6V.

The SGM6611C has two operation modes, the pulse width modulation (PWM) mode and pulse frequency modulation (PFM). The PWM mode is applied at moderate to heavy load. The PFM mode is applied at light load to improve the efficiency. The protection features include output over-voltage protection at 13.2V, cycle-by-cycle over-current protection and thermal shutdown. The device also involves the functions of 4ms built-in soft-start and adjustable switch peak current limit.

The SGM6611C is available in a Green TQFN-2×2.5-11L package.


FEATURES

- 2.7V to 12V Input Voltage Range
- 4.5V to 12.6V Output Voltage Range
- Up to 90% Efficiency (V_{IN} = 3.3V, V_{OUT} = 9V and I_{OUT} = 1.5A)
- Adjustable Peak Current Limit up to 9.5A for High Pulse Current
- 1.1MHz Fixed Switching Frequency (PWM Mode)
- 4ms Built-in Soft-Start
- PFM Operation Mode at Light Load
- 13.2V Internal Output Over-Voltage Protection
- Cycle-by-Cycle Over-Current Protection
- Thermal Shutdown
- Available in a Green TQFN-2×2.5-11L Package

APPLICATIONS

Portable POS Machine
Bluetooth Speaker
E-Cigarette
Fast-Charging Power Bank

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM6611C	TQFN-2×2.5-11L	-40°C to +85°C	SGM6611CYTQV11G/TR	6611C XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

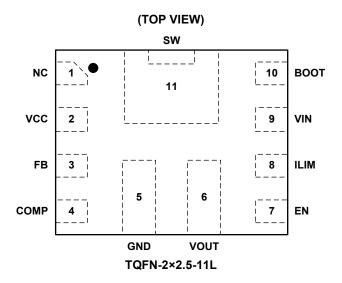
BOOT Voltage0.3V to V _{SW} + 6V
VIN, SW, VOUT Voltages0.3V to 14.5V
EN, VCC, COMP, ILIM, FB Voltages0.3V to 6V
SW Node (Transient: 10ns)2V to 16.5V
Package Thermal Resistance
TQFN-2×2.5-11L, θ _{JA}
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM1500V
CDM1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.7V to 12V
Output Voltage Range	4.5V to 12.6V
Inductance, Effective Value, L	. 0.47µH to 2.2µH
Input Capacitance, Effective Value, CIN	10µF (MIN)
Output Capacitance, Effective Value, $COUT$.	10μF to 1000μF
Operating Junction Temperature Range	40°C to +125°C
Operating Ambient Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

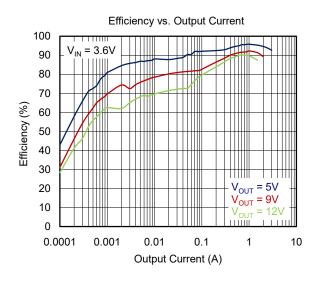
PIN	NAME	I/O	FUNCTION
1	NC	I	No Connection.
2	VCC	0	Output of the Internal Regulator. The VCC pin connects a ceramic capacitor (> 1.0µF) to ground.
3	FB	1	Feedback Output Pin.
4	COMP	0	Output of the Internal Error Amplifier. Connect a loop compensation network between COMP pin and the GND pin.
5	GND	-	Ground.
6	VOUT	0	Boost Converter Output.
7	EN	I	Enable Logic Input. Logic high makes the circuit enabled, and logic low makes it disabled and the device enters shutdown mode.
8	ILIM	0	Adjustable Switch Peak Current Limit. Connect an external resistor between ILIM pin and the GND pin.
9	VIN	I	IC Power Supply Input.
10	воот	0	Power Supply for High-side MOSFET Gate Driver. Connect a capacitor between the BOOT pin and the SW pin.
11	SW	I	Switching Node Pin. Drain connection of low-side power MOSFET and source connection of the high-side power MOSFET.

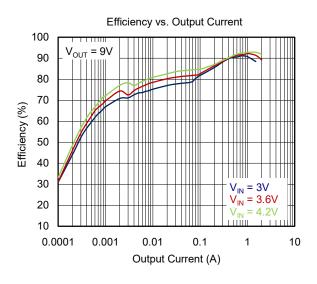
NOTE: I = input, O = output.

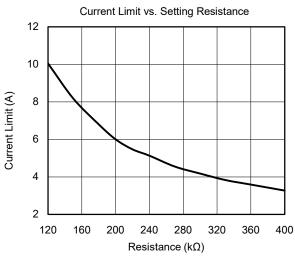
ELECTRICAL CHARACTERISTICS

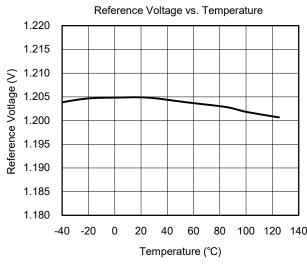
 $(V_{IN} = 2.7 \text{V to } 5.5 \text{V}, V_{OUT} = 9 \text{V}. \text{ Full } = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ typical values are at } T_{J} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

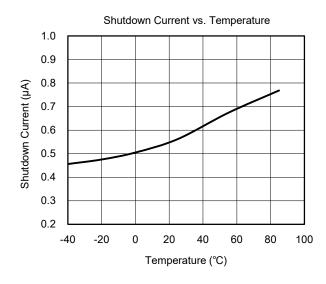
PARAMETER		SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Power Supply								•
Input Voltage Range		V _{IN}		Full	2.7		12	V
				+25°C		2.5	2.62	
VIN Under-Voltage Lockout Threshold VIN Under-Voltage Lockout Hysteresis		V_{IN_UVLO}	V _{IN} rising	Full		2.5	2.7	V
			V _{IN} falling	+25°C		2.4		1
VIN Under-Voltage Lockout Hyster	esis	V _{IN_HYS}		+25°C		100		mV
VCC Regulation		V _{cc}	I _{CC} = 5mA, V _{IN} = 8V	+25°C		5		V
VCC Under-Voltage Lockout Thres	hold	V _{CC_UVLO}	V _{CC} falling	+25°C		2.1		V
	VINI Dire			+25°C		0.23	0.4	
Out and the second of the second of	VIN Pin		IC enabled, no load, V _{FB} = 1.3V,	Full		0.23	0.5	
Operating Quiescent Current	VOLIT Dia	lα	V _{OUT} = 12V	+25°C		90	130	μA
	VOUT Pin			Full		90	160	
Chutdown Current into the \/INI Dia		ı	\/ = 2.6\/ \C dipabled	+25°C		0.6	1.1	ι, Λ
Shutdown Current into the VIN Pin		I _{SHDN}	V _{IN} = 3.6V, IC disabled	Full		0.6	1.5	μA
Output								
Output Voltage Range		V _{OUT}		Full	4.5		12.6	V
Deference Voltage at the ED Din		\/	PWM mode	Full	1.181	1.205	1.229	V
Reference Voltage at the FB Pin		V_{REF}	PFM mode	+25°C		1.207		v
Leakage Current into the FB Pin		I _{FB_LKG}	V _{FB} = 1.2V	+25°C		10	100	nA
Output Over-Voltage Protection Threshold		V _{OVP}	V _{OUT} rising	Full	12.95	13.2	13.55	V
Output Over-Voltage Protection Hy	steresis	V _{OVP_HYS}	V _{OUT} falling below V _{OVP}	+25°C		0.15		V
Soft Startup Time		t _{ss}	C_{OUT} (effective) = 47 μ F, I_{OUT} = 0A	+25°C		4		ms
Error Amplifier								
COMP Pin Sink Current		I _{SINK}	$V_{FB} = V_{REF} + 100$ mV, $V_{COMP} = 1.2$ V	+25°C		120		μΑ
COMP Pin Source Current		I _{SOURCE}	$V_{FB} = V_{REF} - 100 \text{mV}, V_{COMP} = 1.2 \text{V}$	+25°C		15		μΑ
High Clamp Voltage at the COMP	Pin	V_{CCLPH}	$V_{FB} = 1.1V, R_{ILIM} = 127k\Omega$	+25°C		2		V
Low Clamp Voltage at the COMP I	Pin	V _{CCLPL}	V_{FB} = 1.3V, R_{ILIM} = 127k Ω	+25°C		0.4		V
Error Amplifier Transconductance		G_{EA}	V _{COMP} = 1.2V	+25°C		135		μS
Power Switch								
High-side MOSFET On-Resistance	2		V _{CC} = 5V	+25°C		27	34	mΩ
Trigit-side MOOI ET OII-Resistance		R _{DS(ON)}	VCC - 3V	Full		27	44	11122
Low-side MOSFET On-Resistance		TOS(ON)	V _{CC} = 5V	+25°C		15	20	mΩ
Low-side MOSI ET Off-Resistance			VCC - 3V	Full		15	26	11122
Switching Frequency			,					
Switching Frequency		f _{sw}		+25°C	980	1100	1270	kHz
Switching Frequency		1900		Full	930	1100	1320	IXI IZ
Minimum On-Time		t _{ON_MIN}	V _{CC} = 5V	+25°C		120		ns
Current Limit					1	r	1	1
Switch Peak Current Limit		I _{LIM}	$R_{ILIM} = 127k\Omega$	+25°C	8.5	9.5	10.8	Α
Reference Voltage at the ILIM Pin		V_{ILIM}		+25°C		1.205		V

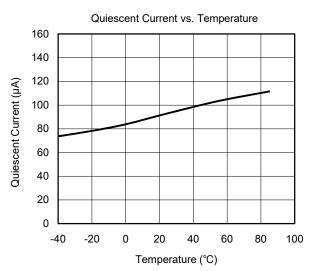

ELECTRICAL CHARACTERISTICS (continued)

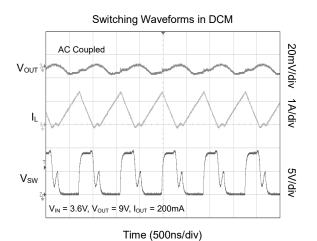

 $(V_{IN} = 2.7 \text{V to } 5.5 \text{V}, V_{OUT} = 9 \text{V}. \text{ Full } = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ typical values are at } T_{J} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

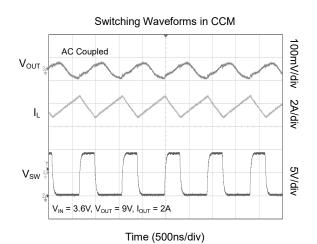

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
EN Logic Input								
EN Logic High Threshold	V_{ENH}		Full	1.2			V	
EN Logic Low Threshold	V _{ENL}		Full			0.4	V	
EN Pull-Down Resistor	R _{EN}		+25°C		800		kΩ	
Thermal Shutdown								
Thermal Shutdown Threshold	T _{SD}	T _J rising			160		°C	
Thermal Shutdown Hysteresis	T _{SD_HYS}	T _J falling below T _{SD}			20		°C	

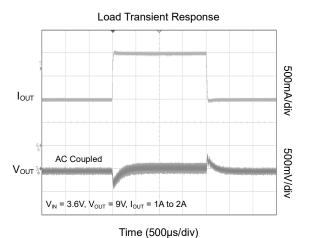

TYPICAL PERFORMANCE CHARACTERISTICS

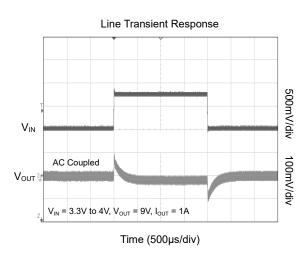

At $T_J = +25$ °C, $V_{IN} = 3.6$ V, $V_{OUT} = 9$ V, unless otherwise noted.

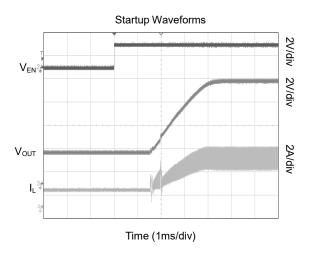


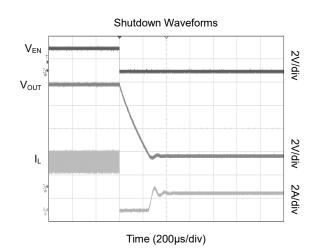


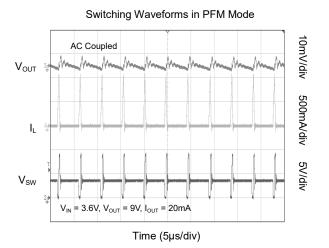


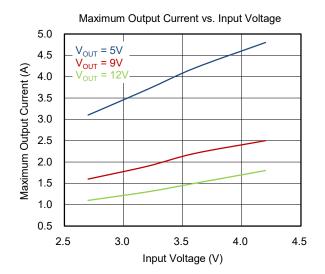



TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At $T_J = +25$ °C, $V_{IN} = 3.6$ V, $V_{OUT} = 9$ V, unless otherwise noted.







TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_J = +25°C, V_{IN} = 3.6V, V_{OUT} = 9V, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

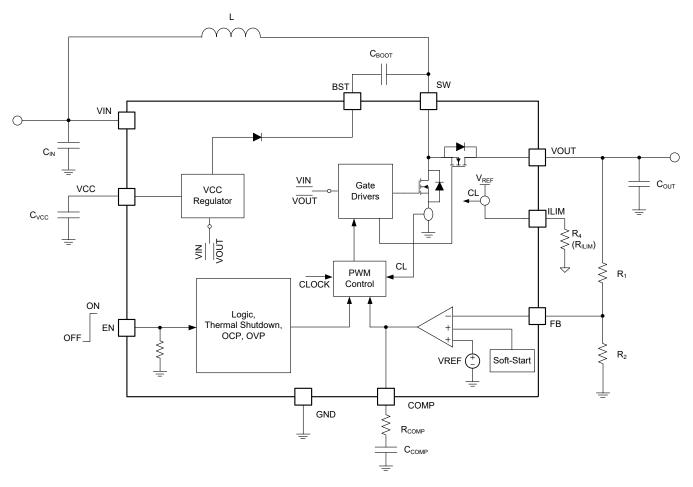


Figure 2. Block Diagram

DETAILED DESCRIPTION

The SGM6611C is a synchronous Boost converter with two integrated power FETs and is capable of delivering up to 9.5A (TYP) switch current. The device adopts the 1.1MHz fixed frequency peak current mode control architecture to regulate the output voltage. The SGM6611C automatically operates in pulse frequency modulation (PFM) mode at light load to improve the efficiency. As the load current increases, the device enters PWM operation to provide a fixed switching frequency. The device can offer excellent line and load transient responses, in addition, the compensation network is configured externally which brings flexibility to applications with different output capacitor and inductor selections. The device also implements various protection features such as cycle-by-cycle current limit for abnormal load conditions, output over-voltage protection and thermal shutdown.

Enable and Disable

The input voltage applied to SGM6611C needs to be higher than the maximum UVLO threshold of 2.5V and the EN pin voltage is higher than 1.2V to enable the device. Pulling the EN pin below 0.4V disables the device, where all internal blocks are turned off, and no voltage is present on VCC pin. While disabled, the device stops switching and enters shutdown mode with less than 1.1µA current consumed. VIN and VOUT are connected through the body diode of the high-side rectifier FET in the shutdown mode.

Adjustable Peak Current Limit

The peak current mode control provides inherent over-current protection as the device monitors the changes of inductor current. As the peak current reaches 9.5A (TYP), the device stops switching and turning off the low-side FET to stop inductor current to rise. The peak current limit threshold is programmable via a resistor connected on ILIM pin to ground. Use Equation below to calculate the desired current limit threshold.

$$I_{LIM} = \frac{1.2 \times 10^6}{R_{ILIM}}$$
 (1)

where R_{ILIM} is the resistor connected between the ILIM

pin and ground, and I_{LIM} is the peak current limit.

When I_{LIM} is 9.5A (TYP), the value of the resistor is $127k\Omega.$

Soft-Start

The SGM6611C implements internal soft-start function of 4ms (TYP). When enabled, the device slowly ramps the reference voltage to prevent large inrush current during startup.

Over-Voltage Protection (OVP)

The device implements over-voltage protection to prevent the device from damage and protect the device connected to the output of SGM6611C. When the voltage present on the VOUT pin exceeds 13.2V (TYP), the device stops switching immediately to prevent the output voltage from rising. As the output voltage drops below 150mV (TYP) of hysteresis voltage that is lower than the OVP threshold, the device resumes operation.

Under-Voltage Lockout (UVLO)

An under-voltage lockout (UVLO) circuit prevents the device from malfunctioning at low input voltage and the battery from excessive discharge. The SGM6611C has both VIN UVLO function and VCC UVLO function. It disables the device from switching when the falling voltage at the VIN pin trips the UVLO threshold $V_{\text{IN_UVLO}}$, which is typically 2.4V. The input UVLO function implements a 100mV hysteresis to prevent the false turn-on due to line voltage variations, where the device cannot be turned on until the input voltage increases to 2.5V or higher. When the falling voltage at the VCC pin trips the UVLO threshold $V_{\text{CC_UVLO}}$, typically 2.1V, the device is also disabled.

Thermal Shutdown

A thermal shutdown function is implemented to prevent damage caused by excessive heat and power dissipation. Once a junction temperature of +160°C (TYP) is exceeded, the device is shut down. The device is released from shutdown automatically when the junction temperature decreases by 20°C.

DETAILED DESCRIPTION (continued)

Device Functional Modes

Operation

The SGM6611C adopts the fixed frequency pulse width modulation (PWM) mode in moderate to heavy load condition. At the start of each clock cycle, the low-side power FET is turned on to ramp up the inductor current until the inductor current reaches the level determined by the output of the internal error amplifier. When the current is reached, LS FET is turned off, and a dead time is issued which is used to prevent shoot-through. During the dead time, the inductor current flows through the body diode of the high-side FET. As the dead time ends, the high-side FET is turned on to ramp down the inductor current to replenish the output capacitor and deliver current to the load. This cycle repeats with a 1.1MHz switching frequency.

PFM Mode

In order to improve the light load efficiency, the SGM6611C implements PFM operation at light load. At light load, the internal error amplifier's output decreases to lower the inductor current. As the current reaches zero during the low-side off-time, the high-side FET turns off till the next switching cycle starts. As the load current decreases further, the output of the error

amplifier reaches a voltage that is corresponds to $I_{LIM}/10$. The output of the error amplifier is clamped at this value and no longer decreases. The SGM6611C automatically adjusts the off-time in PFM mode to meet the load demand, and lower load current results in longer off-time. The output voltage is regulated to 0.2% higher than the nominal programmed output voltage at PFM mode. The SGM6611C is capable of achieving above 70% efficiency when the load current is less than 1mA. Output voltage ripple is also lower in PFM mode since the peak inductor current is lower.

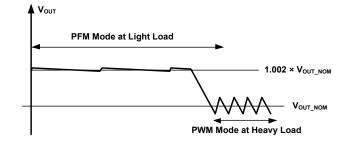


Figure 3. Output Voltage in PWM Mode and PFM Mode

APPLICATION INFORMATION

The SGM6611C is capable of supporting up to 12.6V output voltage, while providing 9.5A (TYP) continuous switch current. The device automatically operates in PFM mode in light load. At medium to heavy load, the device switches to PWM operation. PFM mode provides high light load efficiency while PWM mode provides constant switching frequency. The fixed frequency peak current mode control offers excellent line and load transient responses. The external loop compensation enables design flexibility with various inductor and output capacitor combinations.

Table 1. Design Parameters

Design Parameters	Example Values
Input Voltage Range	3.0V to 4.35V
Output Voltage	9V
Output Voltage Ripple	100mV peak-to-peak
Output Current Rating	1.5A
Operating Frequency	1.1MHz
Operation Mode at Light Load	PFM (SGM6611C)

Setting Peak Current Limit

The peak current limit is programmed via an external resistor on ILIM pin. The resistor value can be calculated by Equation 2:

$$I_{LIM} = \frac{1.2 \times 10^6}{R_{ILIM}}$$
 (2)

where R_{ILIM} is the resistor connected between the ILIM pin and ground, and I_{LIM} is the switching peak current limit

A standard $127k\Omega$ provides the 9.5A typical current limit. Considering variation due to tolerance and temperature, the worst-case required peak current should be lower than the minimal current limit rating to ensure that the SGM6611C can regulate the output voltage. For Boost converter, the worst case occurs at the lowest VIN and the highest load current.

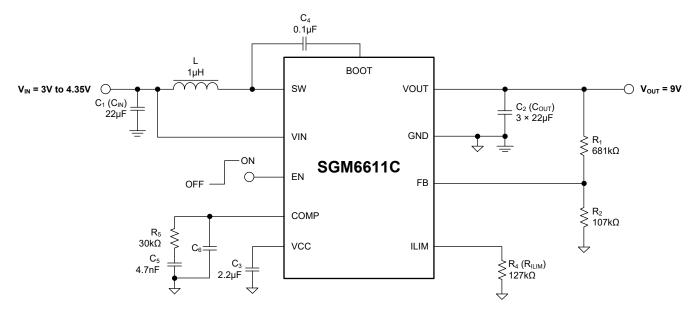


Figure 4. SGM6611C Single-Cell Li-Ion Battery to 9V/1.5A Output Converter

Setting Output Voltage

The output voltage of SGM6611C is programmed by a resistive divider connected to FB pin. Use Equation below to program the output voltage. R1 is the top feedback resistor and R2 is the bottom feedback resistor. The recommended value for R2 should be less than $120k\Omega$.

$$R_1 = \frac{(V_{OUT} - V_{REF}) \times R_2}{V_{REF}}$$
 (3)

Inductor Selection

Inductor is an essential element for DC/DC switch mode power supplies regardless of topology. Inductor serves as the energy storage element for power conversion. Inductance and inductor's saturation current are the two most important criterions for inductor selection. For general rule of thumb, the selected inductance should provide a peak-to-peak ripple current that is around 30% of the average inductor current at full load and nominal input voltage. The average inductor current for a Boost converter is the input current. The SGM6611C is optimized to operate with inductor values between 0.47µH and 2.2µH. Lower inductance part generally has smaller size while providing sufficient saturation current rating, and larger inductance provides lower peak-to-peak ripple current, which helps to maximize the output current delivery.

Equations 4 to 6 show the calculated key parameters for selecting the inductor. The selected inductor should meet the worst case that occurs at minimum input voltage and maximal load current. Margin should be added to cover inductance de-rating and conversion

efficiency.

For Boost converter, the average inductor current is the average input current, Equation 4 is used to calculate the average inductor current:

$$I_{DC} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta}$$
 (4)

where V_{OUT} is the output voltage, I_{OUT} is the output current, V_{IN} is the input voltage, and η is the power conversion efficiency.

Use Equation 5 below to set the inductor current peak-to-peak ripple.

$$I_{PP} = \frac{1}{L \times (\frac{1}{V_{OUT} - V_{IN}} + \frac{1}{V_{IN}}) \times f_{SW}}$$
 (5)

where I_{PP} is the inductor peak-to-peak ripple, L is the inductor value, f_{SW} is the switching frequency, V_{OUT} is the output voltage, and V_{IN} is the input voltage.

The peak inductor current is the sum of average current plus half of the peak-to-peak inductor current shown in Equation 6:

$$I_{LPEAK} = I_{DC} + \frac{I_{PP}}{2} \tag{6}$$

The selected inductor should have the saturation current rating higher than the calculated peak current, and the calculated peak current should be lower than the peak current limit of SGM6611C.

Inductor's DCR, material type, DC/DC's power FET resistance and switching speed affect the overall efficiency of the converter, therefore, careful inductor selection is critical to ensure good performance.

Table 2 lists the recommended inductors for SGM6611C.

Table 2. Recommended Inductors

Part Number	L (µH)	DCR MAX (mΩ)	Saturation Current/ Heat Rating Current (A)	Size MAX (L mm × W mm × H mm)	Manufacturer
HTTH25201T-1R0MSR	1.0	29	5.0/5.0	2.5 × 2.0 × 1.0	Cyntec
74439344010	1.0	5.5	27.5/12	6.65 × 6.45 × 3.0	Wurth-Elektronik
744311150	1.5	7.2	14.0/11.0	7.3 × 7.2 × 4.0	Wurth-Elektronik
CDMC8D28NP-1R8MC	1.8	12.6	9.4/9.3	9.5 × 8.7 × 3.0	Sumida
744325180	1.8	3.5	18/14	10.5 × 10.2 × 4.7	Wurth-Elektronik
744311220	2.2	12.5	13.0/9.0	7.3 × 7.2 × 4.0	Wurth-Elektronik
PIMB103T-2R2MS	2.2	9.0	16/13	11.2 × 10.3 × 3.0	Cyntec
PIMB065T-2R2MS	2.2	12.5	12/10.5	7.4 × 6.8 × 5.0	Cyntec

Input Capacitor Selection

Boost converter's input capacitor has continuous current throughout the entire switching cycle. A $10\mu F$ ceramic capacitor is recommended to place between the VIN pin and GND pin of SGM6611C as close as possible. For the applications where the SGM6611C is located far away from the input source, a $47\mu F$ or higher capacitance capacitor is recommended to damp the wiring harness's inductance.

The VCC pin is the output of the internal regulator, a $1\mu F$ ceramic capacitor is recommended to place on the VCC pin.

Output Capacitor Selection

The output capacitors of Boost converter dictate the

output voltage ripple and load transient response. Equation 7 is used to estimate the necessary capacitance to achieve the desired output voltage ripple, where ΔV is the maximum allowed ripple. Three 22 μ F ceramic output capacitors are recommended for SGM6611C. Due to the DC de-rating effect of the ceramic capacitor, margin should be considered, where higher capacitance improves the transient response.

$$V_{RIPPLE_DIS} = \frac{(V_{OUT} - V_{IN_MIN}) \times I_{OUT}}{V_{OLT} \times f_{SW} \times C_{OLT}}$$
(7)

ESR of the output capacitor affects the output ripple. Use Equation 8 to set the output ripple caused by ESR.

$$V_{RIPPLE ESR} = I_{LPEAK} \times R_{ESR}$$
 (8)

Loop Stability

The compensation network of SGM6611C is completed externally to improve design flexibility. The SGM6611C implements a transconductance error amplifier, where the COMP pin is the output of the internal error amplifier. A Type-II compensation network consisting of R5, C5 and C6 connected on COMP pin is used to configure the loop response of SGM6611C.

The power stage small signal loop response for peak current control can be shown by Equation 9.

$$G_{PS}(S) = \frac{R_{o} \times (1-D)}{2 \times R_{SENSE}} \times \frac{(1 + \frac{S}{2 \times \pi \times f_{ESRZ}})(1 - \frac{S}{2 \times \pi \times f_{RHPZ}})}{1 + \frac{S}{2 \times \pi \times f_{D}}}$$
(9)

where D is the switching duty cycle, R_O is the output load resistance, R_{SENSE} is the equivalent internal current sense resistor, which is 0.08Ω . f_P is the pole's frequency, f_{ESRZ} is the zero's frequency, and f_{RHPZ} is the right-half-plane-zero's frequency.

The D, f_P , f_{ESRZ} and f_{RHPZ} can be set by following equations.

$$D = 1 - \frac{V_{IN} \times \eta}{V_{OUT}}$$
 (10)

where η is the power conversion efficiency.

$$f_{P} = \frac{2}{2\pi \times R_{O} \times C_{OUT}}$$
 (11)

where C_{OUT} is effective capacitance of the output capacitor.

$$f_{\text{ESRZ}} = \frac{1}{2\pi \times R_{\text{ESR}} \times C_{\text{OUT}}}$$
 (12)

where R_{ESR} is the equivalent series resistance of the output capacitor.

$$f_{RHPZ} = \frac{R_O \times (1-D)^2}{2\pi \times L}$$
 (13)

Equation 14 shows the small signal transfer function of the compensation network.

$$G_{c}(S) = \frac{G_{EA} \times R_{EA} \times V_{REF}}{V_{OUT}} \times \frac{(1 + \frac{S}{2 \times \pi \times f_{COMZ}})}{(1 + \frac{S}{2 \times \pi \times f_{COMP1}})(1 + \frac{S}{2 \times \pi \times f_{COMP2}})}$$
(14)

where G_{EA} is the amplifier's transconductance, R_{EA} is the amplifier's output resistance, V_{REF} is the reference voltage at the FB pin, V_{OUT} is the output voltage, f_{COMP1} , f_{COMP2} are the pole's frequency of the compensation network, and f_{COMZ} is the zero's frequency of the compensation network.

Once the error amplifier and power stage's poles and zeros are determined, the compensation network's component value can be designed. The designed loop crossover frequency f_C should be within 1/5 of the RHPZ frequency (f_{RHPZ}) or 1/10 of the switching frequency. Higher crossover frequency could improve the transient response. However, the crossover frequency should be designed to avoid instability.

With a selected f_C , Equation 15 can be used to calculate the required R5.

$$R_{5} = \frac{2\pi \times V_{\text{OUT}} \times R_{\text{SENSE}} \times f_{\text{C}} \times C_{\text{OUT}}}{(1-D) \times V_{\text{RFF}} \times G_{\text{FA}}}$$
(15)

Use Equation 16 to calculate the value of C₅.

$$C_5 = \frac{R_0 \times C_{OUT}}{2R_5} \tag{16}$$

Use Equation 17 to calculate the value of C₆.

$$C_6 = \frac{R_{ESR} \times C_{OUT}}{R_5}$$
 (17)

For application with only ceramic capacitor, or if the calculated value of C_6 is less than 10pF, C_6 is not needed.

To measure good loop compensation design, greater than 45° of phase margin and greater than 10dB gain margin could provide good loop stability and avoid output voltage ringing during load and line transient.

Layout Guidelines

In addition to component selection, layout is a critical step to ensure the performance of any switch mode power supplies. Poor layout could result in system instability, EMI failure, and device damage. Thus, place the inductor, input and output capacitors as close to the IC as possible, and use wide and short traces for current carrying traces to minimize PCB inductance.

For Boost converter, the output capacitor's current loop from VOUT pin back to the GND pin of the device should be as small as possible. Use small traces and small copper area of all traces connected to the SW node to minimize SW node vias and to prevent radiation of high-frequency noise. It is also recommended to place a ground plane below the DC/DC to minimize inter plane coupling.

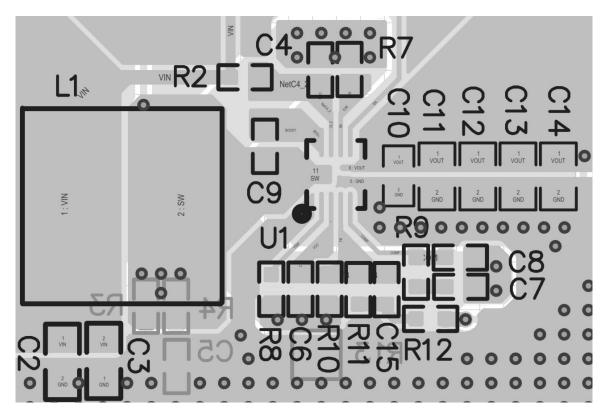
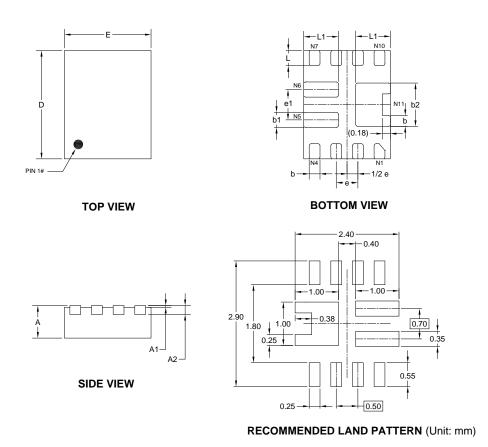


Figure 5. Layout Example

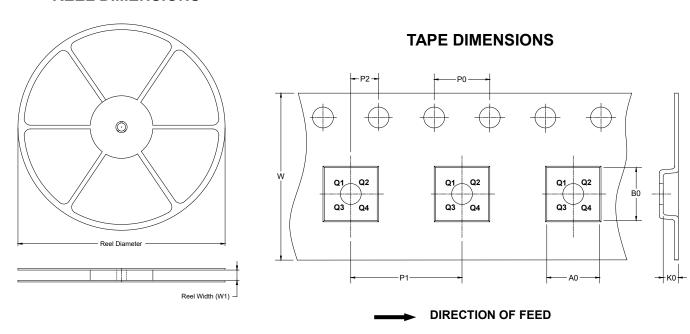
SGM6611C


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DECEMBER 2022 – REV.B.1 to REV.B.2	Page
Updated Maximum Output Current vs. Input Voltage in Typical Performance Characteristics section	8
JULY 2022 – REV.B to REV.B.1	Page
Added SW Node in Absolute Maximum Ratings	2
Updated Detailed Description and Application Information sections	10, 11, 12, 13, 14
OCTOBER 2021 – REV.A.4 to REV.B	Page
Updated the Enable and Disable section	10
Added the Figure 1. Layout Example	16
APRIL 2021 – REV.A.3 to REV.A.4	Page
Updated Loop Stability section	15
MARCH 2021 – REV.A.2 to REV.A.3	Page
Updated Package Outline Dimensions section	17
FEBRUARY 2021 – REV.A.1 to REV.A.2	Page
Updated Marking Information section	2
NOVEMBER 2019 – REV.A to REV.A.1	Page
Updated the curve of Output Current vs. Input Voltage	8
Changes from Original (AUGUST 2019) to REV.A	Page
Changed from product preview to production data	All

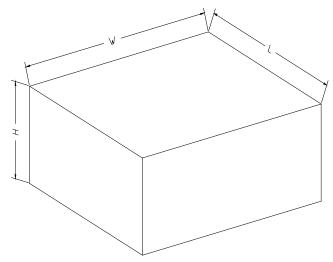
PACKAGE OUTLINE DIMENSIONS TQFN-2×2.5-11L


Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
Α	0.700	0.750	0.800				
A1	0.000	0.020	0.050				
A2		0.203 REF					
D	2.400	2.500	2.600				
E	1.900	2.000	2.100				
е	0.500 BSC						
e1		0.700 BSC					
b	0.200	0.250	0.300				
b1	0.300 0.350		0.400				
b2	0.950	1.000	1.050				
L	L 0.300 0.350		0.400				
L1	0.750	0.800	0.850				

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2×2.5-11L	7"	9.5	2.20	2.70	0.95	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18